SYLLABUS

Section 1: Mathematical Physics

Vector calculus: linear vector space: basis, orthogonality and completeness; matrices; similarity transformations, diagonalization, eigen values and eigen vectors; linear differential equations: second order linear differential equations and solutions involving special functions; complex analysis: Cauchy-Riemann conditions, Cauchy's theorem, singularities, residue theorem and applications; Laplace transform, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensors.

Section 2: Classical Mechanics

Lagrangian formulation: D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle, calculus of variations; symmetry and conservation laws; central force motion: Kepler problem and Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body dynamics: interia tensor, orthogonal transformations, Euler angles, Torque free motion of a symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical transformations: action-angle variables, Poisson brackets, Hamilton-Jacobi equation.

Special theory of relativity: Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Section 3: Electromagnetic Theory

Solutions of electrostatic and magnetostatic problems including boundary value problems; method of images; separation of variables; dielectrics and conductors; magnetic materials; multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection and transmission at normal and oblique incidences; polarization of electromagnetic waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Section 4: Quantum Mechanics

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac Bra-Ket notation, linear vectors and operators in Hilbert space; one dimensional potentials: step potential, finite rectangular well, tunneling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular momentum and spin; addition of angular momenta; variational method and WKB approximation, time independent perturbation theory; elementary scattering theory, Born approximation; symmetries in quantum mechanical systems.

Section 5: Thermodynamics and Statistical Physics

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; BoseEinstein condensation; first and second order phase transitions, phase equilibria, critical point.

Section 6: Atomic and Molecular Physics

Spectra of one-and many-electron atoms; spin-orbit interaction: LS and jj couplings; fine and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transitions in diatomic molecules, Franck-Condon principle; Raman effect; EPR, NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.

Section 7: Solid State Physics

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, intra- and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity; magnetic properties of solids; dia, para, ferro, antiferro and ferri-magnetism, domains and magnetic anisotropy; superconductivity: Type-I and Type II superconductors, Meissner effect, London equation, BCS Theory, flux quantization.

Section 8: Electronics

Semiconductors in equilibrium: electron and hole statistics in intrinsic and extrinsic semiconductors; metal-semiconductor junctions; Ohmic and rectifying contacts; PN diodes, bipolar junction transistors, field effect transistors; negative and positive feedback circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and sequential circuits, flip-flops, timers, counters, registers, A/D and D/A conversion.

Section 9: Nuclear and Particle Physics

Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semiempirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model; conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance.

EXAM PATTERN

Sections	General Aptitude Subject (PH)				
Number of Questions	10	55			
Marks	5 ques. of 1 mark each and	25 ques. of 1 mark each and 30			
	5 ques. of 2 marks each.	ques. of 2 marks each.			
Negative Marking	For 1 mark questions:	For 1 mark questions:			
	1/3 mark will be deducted;	1/3 mark will be deducted;			
	For 2 marks questions:	For 2 marks questions:			
	2/3 marks will be deducted.	2/3 marks will be deducted;			
		No negative marking for MSQ & NAT			
Types of Question	MCQ, MSQ & NAT				
Mode of Exam	Online				
Total number of Question	65				
Total Marks	100				

GATE PHYSICS EXAM CUT-OFF ANALYSIS

GATE CUT-OFF	GEN/EWS	OBC (NCL)	SC/ST/PWD
2023	31.1	27.9	20.7
2022	26.5	23.8	17.6
2021	32.8	29.5	21.8
2020	37.2	33.4	24.8

INDEX

GATE - PHYSICS

CHAPTER NO.	CHAPTER NAME	PAGE NO.
1	MATHEMATICAL PHYSICS	1
2	CLASSICAL MECHANICS	20
3	ELECTROMAGNETIC THEORY	41
4	QUANTUM MECHANICS	65
5	THERMODYNAMICS & STATISTICAL PHYSICS	93
6	ATOMIC & MOLECULAR PHYSICS	119
7	SOLID STATE PHYSICS	136
8	ELECTRONICS	155
9	NUCLEAR & PARTICLE PHYSICS	180

		ŕ	

SUE	SUB - UNIT	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	1 VECTOR SPACE	2	2	2	1	2	2	1	2	1	1	1	1	1	1
2	2 MATRICES	2	1	1	1	1	-	1	1	1	4	1	1	1	1
ĸ	LINEAR AND ORDINARY DIFFERENTIAL EQUATION	1	ı	ı	1	2	1	1	1	1	1	1	2	1	1
4	SPECIAL FUNCTIONS	2	1	1	1	2	1	2	1	2	1	1	2	2	1
2	5 LAPLACE TRANSFORM	ı	ı	-	-	1	-	ı	ı	ı	1	-	1	-	-
9	6 FOURIER SERIES	ı	ı	1	-	1	1	1	1	1	2	-	-	-	1
7	7 ELEMENTARY IDEAS OF TENSORS	ı	1	1	-	-	-	-	1	-	1	-	-	1	-
∞	8 DIRAC DELTA	ı	ı	ı	1	1	ı	ı	1	1	ı	-	-	-	-

GATE PHYSICS

(PREVIOUS YEAR EXAM QUESTIONS)

VECTOR SPACE

[GATE 2011]

1. The unit vector normal to the surface $x^2 + y^2 - z = 1$ at the point P(1, 1, 1) is

(A)
$$\frac{\hat{\imath}+\hat{\jmath}-\hat{k}}{\sqrt{3}}$$

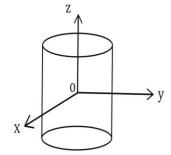
(B)
$$\frac{2\hat{\imath}+\hat{\jmath}-\hat{k}}{\sqrt{6}}$$

(C)
$$\frac{\hat{\iota}+2\hat{\jmath}-\hat{k}}{\sqrt{6}}$$

(B)
$$\frac{2\hat{\imath}+\hat{\jmath}-\hat{k}}{\sqrt{6}}$$
(D)
$$\frac{2\hat{\imath}+2\hat{\jmath}-\hat{k}}{\sqrt{6}}$$

[GATE 2011]

Consider a cylinder of height h and radius a a closed at both ends, centered at the origin. Let $\vec{r} = \hat{\imath}x + \hat{\imath}y + \hat{k}z$ be the position vector and \hat{n} a unit vector normal to the surface. The surface integral $\vec{r} \cdot \hat{n} ds$ over the closed surface of the cylinder is



- (A) $2\pi a^2(a+h)$
- (B) $3\pi a^2 h$

(C) $2\pi a^2 h$

(D) Zero

[GATE 2012]

- Identify the CORRECT statements for the following vectors $\bar{a} = 3\hat{\imath} + 2\hat{\jmath}$ and $\bar{b} = \hat{\imath} + 2\hat{\jmath}$.
 - (A) The vectors \bar{a} and \bar{b} are linearly independent.
 - (B) The vectors \bar{a} and \bar{b} are linearly dependent.
 - (C) The vectors \bar{a} and \bar{b} are orthogonal.
 - (D) The vectors \bar{a} and \bar{b} are normalized.

[GATE 2012]

4. Given $\bar{F} = \bar{r} \times \bar{B}$ where $\bar{B} = B_0(\hat{i} + \hat{j} + \hat{k})$ is a constant vector and \bar{r} is the position vector. The value of $\oint \bar{F} \cdot d\bar{r}$ where C is circle of unit radius centered at origin is

(B) $2\pi B_0$

(C)
$$-2\pi B_0$$

(D) 1

[GATE 2013]

For a scalar function φ satisfying the Laplace equation, $\nabla \varphi$ has

- (A) Zero curl and non-zero divergence
- (B) Non-zero curl and zero divergence
- (C) Zero curl and zero divergence
- (D) Non-zero curl and non-zero divergence

[GATE 2013]

- 6. If \vec{A} and \vec{B} are constant vectors, then $\nabla(\vec{A} \cdot \vec{B} \times \vec{r})$ is
 - (A) $\vec{A} \cdot \vec{B}$

(B) $\vec{A} \times \vec{B}$

 \simeq ш

Д Ø Η

(C) \vec{r}

(D) zero

[GATE 2014]

7. The unit vector perpendicular to the surface $x^2 + y^2 +$ $z^2 = 3$ at the point (1, 1, 1) is

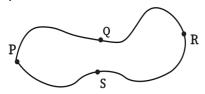
(A)
$$\frac{\hat{x}+\hat{y}-\hat{z}}{\sqrt{3}}$$

(C)
$$\frac{\hat{x}+\hat{y}+\hat{z}}{\sqrt{3}}$$

(B)
$$\frac{\hat{x} - \hat{y} - \hat{z}}{\sqrt{3}}$$
(D)
$$\frac{\hat{x} + \hat{y} + \hat{z}}{\sqrt{3}}$$

[GATE 2015]

8. Given that the magnetic Flux through the closed loop PQRSP is ϕ . If $\int_{n}^{R} \vec{A} \cdot \overrightarrow{dl} = \phi_{1} \ along \ PQR$, the value of $\int_{R}^{R} \vec{A} \cdot \vec{dl}$ along PSR is



(A) $\phi - \phi_1$

(B) $\phi_1 - \phi$

 $(C) - \phi_1$

(D) ϕ_1

[GATE 2015]

9. Four face are given below in Cartesian and spherical polar coordinates.

(i)
$$\vec{F}_1 = K \exp(-r^2/R^2)\hat{r}$$

(ii)
$$\vec{F}_2 = K(x^3\hat{v} - v^3\hat{z})$$

(iii)
$$\vec{F}_3 = K(x^3\hat{x} - y^3\hat{y})$$

(iv)
$$\vec{F}_4 = K(\hat{\phi}/r)$$

Where K is a constant. Identify the correct option.

- (A) (iii) and (iv) are conservative but (1) and (ii) are not
- (B) (i) and (ii) are conservative but (iii) and (iv) are not
- (C) (ii) and (iii) are conservative but (i) and (iv) are not
- (D) (i) and (iii) are conservative but (ii) and (iv) are not

[GATE 2016]

10. Let V_i be the t^{th} component of a vector field \vec{V} , which has zero divergence. If $\partial_i = \partial / \partial x_i$, the expression for $\in_{ijk}\in_{ijk} \partial_i\partial_l V_m$ is equal to

(C)
$$\partial_i^2 V_i$$

 $(A) - \partial_i \partial_k \partial_i$

(D) $-\partial_i^2 V_i$

[GATE 2016]

11. The direction of $\vec{V}f$ for a scalar field $(x,y,z)=\frac{1}{2}x^2-xy+\frac{1}{2}z^2$ at the point P(1,1,2) is

(A)
$$\frac{\left(-\hat{j}-2\hat{k}\right)}{\sqrt{2}}$$

(B)
$$\frac{(-\hat{j}+2\hat{k})}{\sqrt{E}}$$

(C)
$$\frac{(\hat{\jmath}-2\hat{k})}{\sqrt{5}}$$

(D)
$$\frac{(\hat{\jmath}+2\hat{k})}{\sqrt{5}}$$

[GATE 2018]

12. In spherical polar coordinates (r, θ, ϕ) , the unit vector $\hat{\theta}$ at $\left(10, \frac{\pi}{4}, \frac{\pi}{2}\right)$ is

(A) \hat{k}

- $(B) \frac{1}{\sqrt{2}} (\hat{j} + \hat{k})$
- (C) $\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$
- $(\mathsf{D})\frac{1}{\sqrt{2}}(\hat{\jmath}-\hat{k})$

[GATE 2018]

13. Given $\vec{V}_1 = \hat{\imath} - \hat{\jmath}$ and $\vec{V}_2 = -2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$, which one of the following \vec{V}_3 makes $(\vec{V}_1, \vec{V}_2, \vec{V}_3)$ a complete set for a three dimensional real linear vector space?

(A)
$$\vec{V}_3 = \hat{\imath} + \hat{\jmath} + 4\hat{k}$$

(B)
$$\vec{V}_3 = 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$$

(C)
$$\vec{V}_3 = \hat{i} + 2\hat{j} + 6\hat{k}$$

(D)
$$\vec{V}_3 = 2\hat{\imath} + \hat{\jmath} + 4\hat{k}$$

[GATE 2022]

14. From the pairs of operators given below, identify the ones which commute. Here l and j correspond to the orbital angular momentum and the total angular momentum, respectively.

(A)
$$l^2$$
, j^2

(B)
$$l^2$$
, j_z

(C)
$$j^2$$
, l_z

(D)
$$l_z$$
, j_z

[GATE 2023]

15. Consider the vector field \vec{V} consisting of the velocities of points on a thin horizontal disc of radius R=2 m, moving anticlockwise with uniform angular speed $\omega=2$ rad/sec about an axis passing through its center. If $V=\left|\vec{V}\right|$, then which of the following options is (are) CORRECT? (In the options, \hat{r} and $\hat{\theta}$ are unit vectors corresponding to the plane polar coordinates r and θ).

You may use the fact that in cylindrical coordinates (s,ϕ,z) (s is the distance from the z-axis), the gradient, divergence, curl and Laplacian operators are:

$$\vec{\nabla}f = \frac{\partial f}{\partial s}\hat{S} + \frac{1}{s}\frac{\partial f}{\partial \phi}\hat{\phi} + \frac{\partial f}{\partial z}\hat{Z};$$

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{s} \frac{\partial}{\partial s} (sA_s) + \frac{1}{s} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_Z}{\partial z};$$

$$\vec{\nabla} \times \vec{A} = \left(\frac{1}{s} \frac{\partial A_Z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial Z}\right) \hat{S} + \left(\frac{\partial A_S}{\partial Z} - \frac{\partial A_Z}{\partial S}\right) \hat{\phi} +$$

$$\frac{1}{s} \left(\frac{\partial}{\partial s} (sA_{\phi}) - \frac{\partial A_{S}}{\partial \phi} \right) \hat{Z};$$

$$\vec{\nabla}^2 f = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2};$$

(A)
$$\vec{\nabla}V = 2\hat{r}$$

(B)
$$\vec{\nabla} \cdot \vec{V} = 2$$

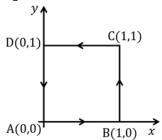
(C) $\vec{V} \times \vec{V} = 4\hat{Z}$, where \hat{Z} is a unit vector perpendicular to the (r, θ) plane

(D)
$$\vec{\nabla}^2 V = -\frac{4}{3} \text{ at } r = 1.5 \ m$$

[GATE-2024]

GATE PHYSICS

16. Consider a vector field $F = (2xz + 3y^2)\hat{y} + 4yz^2\hat{z}$. The closed path (T: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$) in z = 0 plane is shown in figure.



 $\phi_r \vec{F}.\ \overrightarrow{dl}$ denotes the line integral of \vec{F} along the closed path r. Which of the following option is/are true?

(A)
$$\phi_r \vec{F} \cdot \vec{dl} = 0$$

(B) \vec{F} is non –conservative.

(C)
$$\overrightarrow{\nabla}$$
. $\overrightarrow{F} = 0$

(D) \vec{F} can be written as the gradient of a scalar field

			Α	NSWER	KEY				
1	2	3	4	5	6	7	8	9	10
D	В	Α	С	С	В	D	В	D	D
11	12	13	14	15	16				
D	D	D	A,B,D	A,C,D	A,B				

SOLUTIONS: VECTOR SPACE

1. Solution: (D)

We know that,

Unit vector normal to the surface

$$\hat{n} = \frac{\vec{\nabla}\phi}{|\vec{\nabla}\phi|}\Big|_{(11,1)} = \frac{2\hat{\imath}+2\hat{\jmath}-\hat{k}}{3}$$

2. Solution: (B)

By using divergence theorem we get

$$\int_{S} \vec{r} \cdot \hat{n} dS = \int_{V} (\vec{\nabla} \cdot \vec{r}) dV$$
$$= 3 \int_{V} dV = 3V = 3\pi a^{2} h$$

3. Solution: (A)

Given vectors are $\vec{a} = 3\hat{\imath} + 2\hat{\jmath}$, $\vec{b} = \hat{\imath} + 2\hat{\jmath}$

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} \neq 0$$

Therefore \vec{a} and \vec{b} are linearly independent Further, \vec{a} . $\vec{b} \neq 0$, \vec{a} and \vec{b} are not orthogonal $|\vec{a}| \neq$, $|\vec{b}| \neq 1$ Not normalized

Solution: (C)

From given function
$$\vec{F} = \vec{r} \times \vec{B}$$

$$\oint_{C} \vec{F} \cdot \vec{dr} = \iint_{S} (\vec{\nabla} \times \vec{F}) = \iint_{S} [\vec{\nabla} \times (\vec{r} \times \vec{B})] \cdot \vec{dS}$$

$$= \iint_{S} [(\vec{B} \cdot \vec{\nabla})\vec{r} - (\vec{r} \cdot \vec{\nabla})\vec{B} + \vec{r}(\vec{\nabla} \cdot \vec{B}) - B(\vec{\nabla} \cdot \vec{r})] \cdot \vec{dS}$$

$$= \iint_{S} (\vec{B} - 0 + 0 - 3\vec{B}) \cdot d\vec{S} = \iint_{S} -2\vec{B} \cdot d\vec{S} - = -2B_{0}\pi = -2\pi B_{0}$$

5. Solution: (C)

Consider a scalar function Ø which is satisfying the Laplace equation, $\overrightarrow{\nabla^2} \emptyset = 0$

$$\vec{\nabla}(\vec{\nabla}\emptyset) = 0$$

Also

$$\vec{\nabla} \times (\vec{\nabla} \emptyset) = 0$$

Hence, $\overrightarrow{\nabla}\emptyset$ has both zero divergence and zero curl.

6. Solution: (B)

$$\vec{\nabla}[\vec{A}.(\vec{B}\times\vec{r})] = \vec{\nabla}[\vec{r}.(\vec{A}\times\vec{B})] = \vec{\nabla}[(\vec{A}\times\vec{B}).\vec{r}]$$

If \vec{A} and \vec{B} are constant vectors, then $(\vec{A}\times\vec{B})$ is also constant vector.

For constant vector \vec{a} , $\vec{\nabla}(\vec{a} \cdot \vec{r}) = \vec{a}$ Therefore, $\vec{\nabla}[(\vec{A} \times \vec{B}).\vec{r}] = (\vec{A} \times \vec{B})$

7. Solution: (D)

We know that the unit vector perpendicular to the surface is given by,

$$\hat{n} = \frac{\vec{\nabla}\emptyset}{|\vec{\nabla}\emptyset|}$$

$$= \frac{2x\hat{\imath} + 2y\hat{\jmath} + 2z\hat{k}}{2\sqrt{x^2y^2z^2}}\Big|_{(1,1,1)} = \frac{\hat{\imath} + \hat{\jmath} + \hat{k}}{\sqrt{3}}$$

Solution: (B)

Magnetic flux through the loop

$$\begin{split} i.e. & \iint_{S} \vec{B} \cdot d\vec{S} = \emptyset \Rightarrow \iint_{S} \left(\vec{\nabla} \times \vec{A} \right) dS = \emptyset, \int_{pqrs} \vec{A} \cdot \vec{dl} = \varphi \\ \Rightarrow \varphi_{1} + \int_{PQR}^{\cdot} \vec{A} \cdot \vec{dl} + \int_{RSP}^{\cdot} \vec{A} \cdot \vec{dl} = \varphi \\ \Rightarrow \varphi_{1} + \int_{RSP}^{\cdot} \vec{A} \cdot \vec{dl} = \varphi - \int_{RSP}^{\cdot} \vec{A} \cdot \vec{dl} = (\varphi - \varphi_{1}) \int_{PSR}^{\cdot} \vec{A} \cdot \vec{dl} = (\varphi_{1} - \varphi) \end{split}$$

Solution: (D)

By taking curl to the given functions we get,

$$\vec{\nabla} \times \vec{F_1} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & \hat{r}\theta & r \sin \theta \phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ k \cdot \exp\left(-\frac{r^2}{R^2}\right) & 0 & 0 \end{vmatrix} = 0$$

$$\vec{\nabla} \times \vec{F_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & kx^3 & -kz^3 \end{vmatrix} = 3kx^2 \hat{k}$$

$$\vec{\nabla} \times \vec{F_3} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ kx^3 & ky^3 & 0 \end{vmatrix} = 0$$

$$\vec{\nabla} \times \vec{F_4} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r\hat{\theta} & r\sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ 0 & 0 & \frac{k}{r} \end{vmatrix}$$

$$= \frac{1}{r^2 \sin \theta} \left[-\frac{k}{r^2} \right] = -\frac{k}{r^2 \sin \theta} \hat{\theta}$$

10. Solution: (D)

As given, $\epsilon_{ijk} \epsilon_{tmk} \partial_i \partial_t V_m$ $= \epsilon_{kij} \epsilon_{klm} \partial_i \partial_t V_m$ $= (\delta_{if} \ \delta_{im} - \delta_{im} \ \delta_{it}) \partial_i \ \partial_t \ V_m$ $= \partial_i \partial_i V_m - \partial_i \partial_i V_i = \partial_i (\partial_i V_i) - \partial_i^2 V_i = -\partial_i^2 V_i$ (given: $\partial_i V_i = 0$)

11. Solution: (D)

We have,
$$f(x, zy, z) = \frac{1}{2}x^2 - xy + \frac{1}{2}z^2$$

$$\therefore \overline{\nabla} f = \left(\frac{\partial}{\partial x}\hat{\imath} + \frac{\partial}{\partial y}\hat{\jmath} + \frac{\partial}{\partial z}\hat{k}\right)\left(\frac{1}{2}x^2 - xy + \frac{1}{2}z^2\right) = (x - y)\hat{\imath} + (-x)\hat{\jmath} + z\hat{k}$$

$$\therefore \overline{\nabla} f|_{(1,1,2)} = (-\hat{\jmath} + 2\hat{k})$$
Therefore, direction of $\overline{\nabla} f$ is $\frac{-\hat{\jmath} + 2\hat{k}}{\sqrt{z}}$

12. Solution: (D)

In spherical polar coordinate, $\hat{\theta}$ is given by $\hat{\theta} = \cos \theta \, 0 \cos \phi \, \hat{\imath} + \cos \theta \sin \phi \, \hat{\imath} - \sin \theta \, \hat{k}$ Put, r = 10, $\theta = \frac{\pi}{4}$, $\varphi = \frac{\pi}{2}$ $\Rightarrow \ \hat{\theta} = \cos\frac{\pi}{4}\cos\frac{\pi}{2}\hat{\mathbf{i}} + \cos\frac{\pi}{4}\sin\frac{\pi}{2}\hat{\mathbf{j}} - \sin\frac{\pi}{4}\hat{\mathbf{k}}$ $\Rightarrow \hat{\theta} = \frac{1}{\sqrt{2}}\hat{j} - \frac{1}{\sqrt{2}}\hat{k}$

13. Solution: (D)

Given that.

$$\overrightarrow{V_1} = \hat{\imath} - \hat{\jmath}, \overrightarrow{V_2} = -2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$$

If vectors, $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ and $\overrightarrow{V_3}$ makes complete set of 3-D real linear vector space then $\overrightarrow{V_1}, \overrightarrow{V_2}$ and $\overrightarrow{V_3}$ should be linearly independent i.e. $\overrightarrow{V_1}$, $(\overrightarrow{V_2} \times \overrightarrow{V_3}) \neq 0$

Only option (d) satisfies these condition.

14. Solution: (A). (B). (D)

Here,
$$\vec{j}^2 = \vec{j} \cdot \vec{J} = (\vec{l} + \vec{s}) \cdot (\vec{l} + \vec{s}) = l^2 (s^2 + 2\vec{l} \cdot S)$$

Therefore, the commutator of option (a) s.

$$[l^{2}, j^{2}] = [l^{2}, l^{2} + s^{2} + 2\vec{l} \cdot \vec{s}]$$

= 0 [Since, [l², l₁] = 0

Therefore, they commute with each other.

The commutator of option (b) is,

$$\begin{split} &[i^2,j_z] = \left[\left(l^2 + s^2 + 2 \vec{l} \cdot \vec{s} \right), (l_z + s_z) \right] \text{ CAPEep find} \\ &= 2 \left[l_x s_x + l_y s_y + l_z s_z, (l_x + s_z) \right] \\ &= 2 \left(\left[l_x s_x, l_z \right] + \left[l_y s_y, l_z \right] + \left[l_x s_x, s_z \right] + \left[l_y s_y, s_z \right] \right) \\ &= 2 \left(\left(-ihl_y \right) s_x + (i\hbar l_x) s_y + l_x \left(-i\hbar s_y \right) + l_y (ihs_x) \right) = 0 \end{split}$$

Therefore, they commute with each other.

The commutator in option (c) is,

$$\begin{aligned} [\vec{j}^2, l_z] &= \{ l^2 + s^2 + 2\vec{l} \cdot \vec{s}, l_z \} = 2[l_x s_x + l_y s_y + l_z s_z, l_z] \\ &= 2([l_x, l_z] s_x + [l_y, l_z] s_y) = 2(-i\hbar l_y s_x + i\hbar l_x s_y) \neq 0 \end{aligned}$$

Therefore, they do not commute with each other.

The commutator in option (d) is,

$$[l_z, j_l] = [l_z, l_z + s_z] = 0$$

Therefore, they commute with each other.

15. Solution: (A), (C), (D)

Since
$$\vec{v} = \vec{\omega} \times \vec{r} = \omega r \hat{\varphi} \Rightarrow |\vec{v}| = \omega r$$

A.
$$\vec{\nabla} \mathbf{v} = \frac{\partial}{\partial \mathbf{r}} (\omega \mathbf{r}) \hat{\mathbf{r}} = \omega \hat{\mathbf{r}} = 2\hat{\mathbf{r}}$$

B.
$$\vec{\nabla} \cdot \mathbf{v} = \frac{\partial}{\partial \omega} (\omega \mathbf{r}) = 0$$

C.
$$\vec{\nabla} \times \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \mathbf{v} \boldsymbol{\varphi}) \hat{z} = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \times \boldsymbol{\omega} \mathbf{r}) \hat{z} = 2\omega \hat{z}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \omega \mathbf{r} \hat{\varphi}$$

$$\vec{\nabla}^2 \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \frac{\partial \mathbf{v}}{\partial \mathbf{r}}) = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \boldsymbol{\omega}) = \frac{\omega}{r} = \frac{2}{1.5} = 4/3$$

 $: v = \omega r$

16. Solution: (A), (B)

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & (2xz + 3y^2) & 4yz^2 \end{vmatrix}$$
$$= \hat{\imath} \left[(4z^2 - 2x) \right] - \hat{\jmath} \cdot 0 + \hat{k} \left[2z \right]$$
$$= (4z^2 - 2x)\hat{\imath} + 2z\hat{k}$$

Which does not equal to zero so, Vector F is nonconservative vector field.

Now,

For $\oint \vec{F} \cdot \vec{dl}$, we will use Stokes' curl theorem

$$\oint \vec{F} \cdot d\vec{l} = \iint (\vec{\nabla} \times \vec{F}) \cdot d\vec{S}$$

$$\iint (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \iint_0^1 [(4z^2 - 2x)\hat{\imath} + 2z\hat{k}] \cdot (dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k})$$

$$= \left[2x^2z^2 - \frac{x^3}{3} + \frac{z^4}{6}\right]_0^1$$

$$= \left(2 - \frac{1}{2} + \frac{1}{6}\right) - \left(2 - \frac{1}{2} + \frac{1}{6}\right) = 0$$

Therefore, $\oint \vec{F} \cdot \vec{dl}$ should be equal to zero.

MATRICES

[GATE 2011]

- Two matrices A and B are said to be similar if $B = P^{-1}AP$ for some invertible matrix P. Which of the following is Not True?
 - (A) Det A = Det B
 - (B) Trace of A = Trace of B
 - (C) A and B have the same eigenvectors
 - (D) A and B have the same eigenvalues

[GATE 2011]

- 2. A 3 x 3 matrix has elements such that its trace is 11 and its determinant is 36. The eigenvalues of the matrix is
 - (A) 18

(B) 12

(C)9

(D) 6

[GATE 2012]

- 3. The eigenvalues of the matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ are
 - (A) 0, 1, 1

- (B) 0, $-\sqrt{2}$, $\sqrt{2}$
- $(C)\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0$
- (D) $\sqrt{2}$, $\sqrt{2}$, 0

[GATE 2013]

4. The degenerate eigenvalue of the matrix [4-1-1-14-1-1-14] is (your answer should be an integer)

[GATE 2014]

- 5. The matrix $A = \frac{1}{\sqrt{2}} [1 \ 1 + i \ 1 i \ 1]$ is
 - (A) orthogonal
- (B) symmetric
- (C) anti-symmetric
- (D) unitary

[GATE 2017]

- 6. Let X be a column vector of dimension n > 1 with at least one non-zero entry. The number of non-zero eigenvalues of the matrix $M = XX^T$ is
 - (A) 0

(B) n

(C) 1

(D) n - 1

[GATE 2018]

- 7. The eigenvalues of a Hermitian matrix are all
 - (A) real

- (B) imaginary
- (C) of modulus one
- (D) real and positive

[GATE 2019]

- During a rotation, vectors along the axis of rotation remain unchanged. For the rotation matrix $(0\ 1\ 0\ 0\ 0\ -1\ 1\,0\,0$), the unit vector along the axis of rotation is
 - $(A) \frac{1}{2} (2\hat{\imath} \hat{\jmath} + 2\hat{k})$
- $(\mathsf{B}) \frac{1}{\sqrt{3}} \left(\hat{\imath} + \hat{\jmath} \hat{k} \right)$
- (C) $\frac{1}{\sqrt{2}}(\hat{\imath} \hat{\jmath} \hat{k})$ (D) $\frac{1}{2}(2\hat{\imath} + 2\hat{\jmath} \hat{k})$

[GATE 2020]

9. A real, invertible 3×3 matrix M has eigenvalues λ_i , (i = 1,2,3) and the corresponding eigenvectors are $|e_i\rangle$, (i = 1,2,3) respectively. Which one of the following is correct?