INDEX

MH - SET PHYSICS

CHAPTER NO.	CHAPTER NAME	PAGE NO.
1	MATHEMATICAL METHODS	1
2	CLASSICAL MECHANICS	29
3	ELECTROMAGNETIC THEORY	57
4	QUANTUM MECHANICS	85
5	TSM	115
6	ELECTRONICS	140
7	AMP	177
8	SOLID STATE PHYSICS	195
9	NUCLEAR PHYSICS	216

MATHEMATICAL METHODS

MH - SET PHYSICS

(PREVIOUS YEAR EXAM QUESTIONS)

VECTOR ALGEBRA & VECTOR CALCULUS:

[AUG-2011]

1. The angle between vector $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is (in radian):

(A) π

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{4}$

[NOV-2011]

2. If $\bar{A} \cdot (\bar{B} \times \bar{C}) = 0$ in 3-dimensional space, then:

- (A) \bar{A} , \bar{B} , \bar{C} Are coplanar
- (B) \bar{A} is a null vector
- (C) \bar{A} , \bar{B} , \bar{C} span the whole 3-D space.
- (D) $\bar{B} = 0$

[NOV-2011]

3. The dimension of the subspace spanned by the real vectors:

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

(A) 2

(B)3

(C) 4

(D) 5

[FEB-2013]

4. What is the volume of a parallelepiped spanned by the vectors:

$$(\hat{i} + \hat{i}), (\hat{j} + \hat{k}), (\hat{k} + \hat{i})$$
?

(A) Zero

(B) 1

(C) 2

(D) 3

[FEB-2013]

5. The value of $\nabla(r^2)$ is:

(A) \hat{r}

(B) $2\vec{r}$

(C) 2 | r |

(D) zero

[FEB-2013]

6. The value of ∇^2 (1/r) is:

(A) - 1/2

(B) -4 $\pi\delta$ (r)

(C) 4π

(D) zero

[DEC 2013]

7. \bar{r} is the position vector of any point on the surface of a cube of side L. The surface integral.

$$\iint_{\mathcal{S}} \vec{r} \cdot d\vec{s}$$
 is:

(A) 0

(B) ∞

(C) 3L²

(D) $3L^{3}$

8. The value of $\nabla^2(r^2)$ is:

(A) 3

(B) 6

(C) 2r

(D) zero

[DEC-2013]

9. The polar plot of the equation $r=a\theta$ represents:

(A) circle

(B) spiral

(C) Gaussian

(D) parabola

[SEPT-2015]

[DEC-2013]

10. If \vec{a} is a constant vector, then $\vec{\nabla} \cdot (\vec{a} \times \vec{r})$ is equal to:

(A) a

(B) 2a

(C) 0

(D) a/2

[SEPT-2015]

11. The volume of the parallelepiped with sides:

$$\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}.$$

$$\vec{b} = 4\hat{\imath} + 5\hat{\jmath} + 6\hat{k}$$
 And

$$\vec{c} = 7\hat{\imath} + 8\hat{\jmath} + 10\hat{k}$$
 Is:

(A)
$$2 + \sqrt{3}$$

(B) $\sqrt{2}$

(C) $\sqrt{3}$

(D) 3

[SEPT-2015]

12. The area of the triangle whose base is given by \vec{a} =5 $\hat{\imath}$ -

 $3\hat{j}+4\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$ is another side is

$$(A)\sqrt{50} / 2$$

(B)
$$\sqrt{61}$$
 / 2

(C)
$$\sqrt{14}$$
 / 2

(D)
$$\sqrt{51}$$
 / 2

[MAY-2016]

13. $\nabla \left(\frac{1}{|\vec{r}|} \right)$ Is given by:

(A)
$$\frac{1}{r}\hat{r}$$

(B)
$$\frac{1}{r^3}(\hat{\imath}+\hat{\jmath}+\hat{k})$$

$$(C)\frac{r}{r^3}$$

(D)
$$r(\hat{\imath} + \hat{\jmath} + \hat{k})$$

[MAY-2016]

14. Which of the following defines a conservation force?

(A)
$$\overrightarrow{\nabla} \cdot \overrightarrow{F} = 0$$

(B)
$$\vec{\nabla} \times \vec{F} = 0$$

(C)
$$\phi \overrightarrow{F} \cdot \overrightarrow{dr} = 0$$

$$(D)\frac{d\vec{F}}{dt} = 0$$

[MAY-2016]

15. Consider the three vectors:

$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$$

$$\vec{b} = \hat{\imath} - \hat{\jmath} + \hat{k}$$
 and

$$\vec{c} = \hat{\imath} - \hat{\imath} - \hat{k}$$

Which of the following statements is true?

- (A) \vec{a} , \vec{b} , \vec{c} are linearly independent
- (B) \vec{a} , \vec{b} , are linearly dependent
- (C) \vec{b} , \vec{c} are at right angles to each other
- (D) \vec{a} , and \vec{c} are parallel

[MAY-2016]

- 16. The position vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then $\nabla(r^2\vec{r})$ is given by:
 - (A) 0

(B) $5r^2$

(C) r^2

(D) $3r^2$

[APR-2017]

- 17. The dimension of the vector space of n x n symmetric matrices is:
 - (A) $n^2 n$

(B) $\frac{n(n+1)}{2}$ (D) n(n-1)/2

(C) $n^2/2$

[APR-2017]

- 18. Consider the vector space of polynomials of degree less than or equal to 5. This vector space has dimension:
 - (A)5

- (B)6
- (C) Infinity
- (D) 4

[APR-2017]

- 19. If $r = \sqrt{(x^2 + y^2 + z^2)}$, grad $r(\overrightarrow{\nabla} r)$ is:
 - (A) \vec{r}/r

(B)0

(C) r

(D) \vec{r}

[JAN-2018]

- 20. If $r^2 = x^2 + y^2 + z^2$, grad r^n is:
 - (A) 0

(B) $r^{n-1}\vec{r}$

(C) $nr^{n-2}\vec{r}$

(D) $n(n-2)r^n\vec{r}$

[JAN-2018]

- 21. Let V be a 5-dimensional vector space and V1 and V2 be subspaces of V which are 3-dimensional each. Then the dimension of V1 \wedge V2 is:
 - (A)3

(B)0

(C) 1

(D) 2

[JUNE-2019]

- 22. If a vector field $\overline{F} = x\hat{\imath} + 2y\hat{\jmath}, 3z\hat{k}$, then $\overline{\nabla} \times (\overline{\nabla} \times F)$ is:
 - (A) Zero

(B) ĵ

(C) $2\hat{j}$

(D) $3\hat{k}$

[JUNE-2019]

- 23. If $\overline{A} = x\hat{e}_x + y\hat{e}_y + z\hat{e}_i$, then $\nabla^2 \overline{A}$ will be:
 - (A) 1

(B)3

(C) 0

(D) - 3

[DEC-2020]

- 24. Unit vector perpendicular to $\bar{A} = 2\hat{\imath} \hat{\jmath} + \hat{k}$ and $\bar{B} = 3\hat{\imath} + \hat{k}$ $4\hat{\imath} - \hat{k}$ is:
 - (A) $\frac{-3\hat{i}+5\hat{j}+11\hat{k}}{\sqrt{155}}$
- (C) $\frac{4\hat{i}-\hat{j}-5\hat{k}}{\sqrt{42}}$
- (B) $\frac{\hat{\iota}-\hat{\jmath}+2\hat{k}}{\sqrt{6}}$ (D) $\frac{\hat{\iota}+2\hat{\jmath}-4\hat{k}}{\sqrt{21}}$

- [DEC-2020]
- 25. If S is a closed surface enclosing a volume V and \hat{n} is the unit vector normal to the surface and \bar{r} is the position vector, then the value of the integral $\iint_{S} \hat{n} \, dS$ is:
 - (A) V

(B) 2V

(C) 0

(D) 3V

[SEPT-2021]

- 26. Consider a vector $\overline{v} = \frac{\overline{r}}{r^3}$. The surface integral of this vector over the surface of a cube of side a and centred at the origin is:
 - (A) zero

(B) 2π

(C) $2\pi a^3$

(D) 4π

[SEPT-2021]

- 27. If a force \overline{F} is derivable from a potential function V(r), where r is the distance from the origin of the coordinate system, it follows that:
 - (A) $\overline{\nabla} \times \overline{F} = 0$
- (B) $\overline{\nabla} \cdot \overline{F} = 0$
- (C) $\overline{\nabla}V = 0$
- (D) $\nabla^2 V = 0$

[MARCH-2023]

- 28. Consider vectors $\vec{a} = \hat{\imath} + 5\hat{\jmath} + \hat{k}, \vec{b} = \hat{\imath} 5\hat{\jmath} + \hat{k}$ and $\vec{c} = \hat{j} + \hat{k}$ $\hat{i} + \hat{k}$. Which of the following statements is true?
 - (A) \vec{a} , \vec{b} , \vec{c} are linearly independent
 - (B) \vec{a} , \vec{b} , \vec{c} are linearly dependent
 - (C) \vec{a} , \vec{b} , \vec{c} are orthogonal
 - (D) \vec{a} , \vec{b} , \vec{c} are normalized

[MARCH-2023]

29. Which of the following equations represents a conservative force?

(A)
$$\bar{F} = (xy + z^2)\hat{i} + x^2\hat{j} - 2xz\hat{k}$$

- (B) $\bar{F} = (2xy + z^2)\hat{i} + x^2\hat{j} + 2xz\hat{k}$
- (C) $\bar{F} = (xy z^2)\hat{i} x^2\hat{j} + 2xz\hat{k}$
- (D) $\bar{F} = (xy z^2)\hat{i} + x^2\hat{i} + 2xz\hat{k}$

ANSWER KEY										
1	2	3	4	5	6	7	8	9	10	
$\frac{\pi}{3}$	Α	D	С	В	D	D	В	В	В	
11	12	13	14	15	16	17	18	19	20	
D	D	$-\frac{1}{r^3}\hat{r}$	В	Α	В	В	В	Α	С	
21	22	23	24	25	26	27	28	29		
С	Α	С	Α	С	D	Α	Α	В		

SOLUTIONS: VECTOR ALGEBRA & VECTOR CALCULUS

1. Solution:

Let θ be the angle between

the vector $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$

Dot product between the vector

$$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} \qquad ----- (i$$

Angle between the vectors $\vec{A} = \hat{\imath} + \hat{\jmath}$ And $\vec{B} = \hat{\jmath} + \hat{k}$

Putting the value of
$$\vec{A}$$
 & \vec{B} in equation (i) $\cos\theta = \frac{\vec{A}.\vec{B}}{|\vec{A}||\vec{B}|} = \frac{(i+j)}{\sqrt{1^2+1^2}} \cdot \frac{(j+\hat{k})}{\sqrt{1^2+1^2}} = \frac{1}{2}$

$$\theta = \frac{\pi}{2}$$

No option is correct.

2. Solution: (A)

if
$$\overrightarrow{A}$$
. $(\overrightarrow{B} \times \overrightarrow{C}) = 0$

$$[\overrightarrow{A}. \overrightarrow{B}. \overrightarrow{C}] = 0$$

 \overrightarrow{A} . \overrightarrow{B} . \overrightarrow{C} are coplanar.

Hence option (A) is correct.

3. Solution: (D)

$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0$$

Independent vectors are spanned by the

real vector i. e 5

Hence the correct option is (D)

4. Solution: (C) volume of parallelopiped is

$$\vec{a} \cdot \vec{b} \times \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}]$$

Let
$$\vec{a} = \hat{i} + \hat{j}$$
, $\vec{b} = \hat{j} + \hat{k}$, $c = \hat{k} + \hat{c}$

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$
$$= \hat{i} [1-0] - \hat{j} [0-1] + \hat{k} [0-1]$$

$$=\hat{i}+\hat{j}-\hat{k}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\hat{\imath} + \hat{\jmath}) \cdot (\hat{\imath} + \hat{\jmath} - \hat{k})$$
$$= 1 + 1$$

Hence option (C) is correct

5. Solution: (B)

$$\vec{\nabla} \cdot (r^2) = 2r\hat{r}$$

$$\vec{\nabla} \cdot (r^2) = 2r\hat{r}$$

$$\hat{r} = \frac{\vec{r}}{|r|} \Rightarrow r\hat{r} = \vec{r}$$

$$\vec{\nabla}(r^2) = \hat{r}\frac{\partial}{\partial r}(r^2) = 2r\hat{r}$$

$$\vec{\nabla}(r^2) = 2\vec{r}$$

Hence option (B) is correct.

6. Solution: (D)

$$\vec{\nabla}^{2} \left(\frac{1}{r} \right) \Rightarrow \vec{\nabla} \cdot \vec{\nabla} \left(\frac{1}{r} \right) \Rightarrow \vec{\nabla} \cdot \vec{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \right)$$

$$\vec{\nabla} \cdot \left(-\frac{1}{r^{2}} \right) \hat{r} \Rightarrow \vec{\nabla} \cdot \left(\frac{-\vec{r}}{r^{3}} \right)$$

$$\nabla (\phi \cdot \vec{A}) = \phi(\vec{\nabla} \cdot \vec{A}) + \vec{A}(\vec{\nabla} \cdot \hat{\phi})$$

 ϕ -scalar field, $\vec{A} = \text{vector field}$.

$$\nabla \cdot \left(\frac{-r}{r^3}\right) = \frac{-1}{r^3} (\vec{\nabla} \cdot \vec{r}) - \vec{r} \cdot \nabla \left(\frac{1}{r^3}\right)^+$$

$$= \frac{-3}{r^3} - \vec{r} \cdot \left(\frac{-3}{r^4}\right) \cdot \hat{r}$$

$$= -\frac{-3}{r^3} + \frac{3}{r^3}$$

$$\Rightarrow \nabla^2 \left(\frac{1}{r}\right)^4 = 0$$

Hence option (D) is correct.

7. Solution: (D)

Since
$$\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$

$$\bar{\nabla} \cdot \bar{\gamma} = 3$$

By Gauss-Divergence theorem,

$$\iint_{S} \cdot \bar{r} \cdot d\bar{s} = \iiint_{V} (\bar{\nabla} \cdot \bar{r}) d\tau$$
$$= 3 \iiint_{V} d\tau$$
$$\iint_{S} \bar{r} \cdot d\bar{s} = 3L^{3}$$

Hence option (D) is correct

8. Solution: (B)

$$\nabla^2(x^2 + y^2 + z^4) = \left(\frac{\partial^2}{\partial x^+} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z}\right) \cdot (x^2 + y^2 + z^2) = 6$$

Hence option (B) is correct

9. Solution: (B)

The graph of the equation $r=\mathrm{a}\theta$ is spiral path. Hence option (B) is correct

10. Solution: (B)

$$\vec{a} = a(\hat{\imath} + \hat{\jmath} + \hat{k})$$

$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$

$$\vec{a} < \vec{r} = a \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix}$$

$$= a [\hat{\imath} (z - y)) + \hat{\jmath} (x - z)$$

= a
$$[\hat{i}(z-y)) + \hat{j}(x-z) + \hat{k}(y-x)]$$

$$\nabla \times (\vec{a} \times \vec{r}) = a \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial y \\ z-y & x-y & y-x \end{vmatrix}$$

=
$$a[i(1-(-1)-\hat{j}(-1-1)+\hat{k}(2))]$$

$$= 2a\hat{i} + 2a\hat{j} + 2a\hat{k}$$

= 2a

Hence option (B) is correct

11. Solution: (D)

$$\vec{a} = 1 + 2j + 3\hat{k}$$

$$\hat{b} = 4i + 5j + 6\hat{k}$$

$$\vec{c} = 7i + 8j + 10\hat{k}$$

$$\vec{a} \times \vec{b} \times \vec{c} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix}$$

$$|\vec{a} \times \vec{b} \times \vec{c}| = 1(50 - 48) - 2(40 - 42) + 3(32 - 35)$$

$$= 1[2] - 2[-2] + 3[-3]$$

= 2 + 4 - 9

$$|\vec{a} \times \vec{b} \times \vec{c}| = -3$$

|volume|= |-3|

volume = 3

Hence option (D) is correct

12. Solution: (D)

Given
$$\vec{a} = 5\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\vec{b} = \hat{j} - \hat{k}$$

Area of trangle = $\frac{1}{2}$ bh

$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & -3 & 4 \\ 0 & 1 & -1 \end{vmatrix}$$

$$|\vec{a} \times \vec{b}| = \hat{\iota} [(-1 \times -3) - (1 \times 4)] - j[(-1 \times 5) - (0 \times 4)] +$$

$$E[(1 \times 5) - (0x - 3)]$$

$$=\hat{i}[3-4]-\hat{j}[-5]+\hat{k}[5]$$

$$|\vec{a} \times \vec{b}| = -\hat{\imath} + 5\hat{\jmath} + 5\hat{k}$$

$$= \sqrt{(-1)^2 + (5)^2 + (5)^2}$$

$$= \sqrt{1^2 + 5^2 + 5^2}$$

$$\vec{a} \times \vec{b} = \sqrt{51}$$
 Area of trangle $\frac{1}{2}$ 6h
$$= \frac{\sqrt{51}}{2}$$

Hence option (D) is correct

13. Solution:

Short cut $\nabla \mathbf{r}^n = n r^{n-2} \vec{r}$

$$\nabla \left(\frac{1}{r}\right) = (-1)(r)^{(-1-2)} \cdot \vec{r}$$

$$\nabla \left(\frac{1}{r}\right) = -\frac{1}{r^3}\hat{r}$$

No option is correct.

14. Solution: (B)

If a force is conservative

$$\int \vec{F} \cdot \vec{dl} = 0$$

By using stoke's theorem

$$\int \vec{F} \cdot \vec{dl} = \iint (\vec{\nabla} \times \vec{F}) ds = 0$$

Hence option (B) is correct.

15. Solution: (A)

$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}.$$

$$\vec{b} = \hat{\imath} - \hat{\jmath} + \hat{k}$$

$$\vec{c} = \hat{\imath} - \hat{\jmath} - \hat{k}$$

linearly dependent

linearly independent

if
$$| \det | = 0$$
 if $| \det | \neq 0$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{vmatrix}$$

$$\Rightarrow 1(1+1) - 1(-1-1) + 1(-1+1)$$

$$\Rightarrow 2 + 2 + 0$$

$$\Rightarrow 4 \neq 0$$

So, \vec{a} , \vec{b} , \vec{c} are linearly independent,

Hence option (A) is, correct.

16. Solution: (B)

$$\nabla (r^2 r)$$

The position vector $\mathbf{r} = \mathbf{x}\hat{\imath} + \mathbf{y}\hat{\jmath} + \mathbf{z}\hat{k}$

$$r^2 = (X^2 + Y^2 + Z^2)$$

Now calculate r^2 . r

$$r^2$$
.r = $(x^2 + y^2 + z^2)(x\hat{i} + y\hat{j} + z\hat{k})$

Now take the divergence (∇ .) of this expression

$$\nabla \cdot (r^2 \cdot r) = 3(x^2 + y^2 + z^2) + 2(x + y + z)$$

$$=3r^2 + 2r$$

$$=5r^{2}$$

Hence Option is B is correct

17. Solution: (B)

The dimension of vector space of $n \times n$ symmetric matrices is $\frac{n(n+1)}{2}$

Hence, option (B) is correct.

18. Solution: (B)

Dimension of a vector spaces= Highest degree of polynomial + 1 Dimension of a vector space =5+1=6 Hence, option (B) is correct.

19. Solution: (A)

Let
$$|\vec{x}| = \sqrt{x^2 + y^2 + z^2}$$

$$\hat{x} \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2}$$
 this can be computed with the chain rule

Let
$$\frac{\partial}{\partial x}$$
 g[h(x)], h(x) = $x^2 + y^2 + z^2 \Rightarrow \frac{\partial h}{\partial x} = 2x$

$$g(h) = \sqrt{h} \rightarrow \frac{\partial g}{\partial h} = \frac{\partial (h)^{\frac{1}{2}}}{\partial h} = \frac{1}{2} h^{-\frac{1}{2}}$$
$$\frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = 2x \times \frac{1}{2} \frac{1}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \hat{x}$$

$$\hat{y} \frac{\partial}{\partial y} \sqrt{x^2 + y^2 + z^2} = \frac{y}{\sqrt{x^2 + y^2 + z^2}} \hat{y}$$

$$\hat{z}\frac{\partial}{\partial y}\sqrt{x^2+y^2+z^2} = \frac{z}{\sqrt{x^2+y^2+z^2}}\hat{z}$$

$$\nabla \cdot f = \hat{x} \frac{x}{\sqrt{x^2 + y^2 + z^2}} + \hat{y} \frac{y}{\sqrt{x^2 + y^2 + z^2}} + \hat{z} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

With
$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \hat{x}.x + \hat{y}.y + \hat{z}.z$$

$$\sqrt{r^2} = \sqrt{x^2 + y^2 + z^2} = |\vec{r}|$$

$$\vec{\nabla} f = \frac{\vec{r}}{|r|}$$

Hence option (A) is correct

20. Solution: (C)

Solution: (C)
Here
$$r^2 = x^2 + y^2 + z^2$$
gives
$$2r \frac{\partial r}{\partial x} = 2x$$

$$2r \frac{\partial r}{\partial y} = 2y$$

$$2r \frac{\partial r}{\partial z} = 2z$$

$$\frac{\partial r}{\partial x} = \frac{x}{r}, \quad \frac{\partial r}{\partial y} = \frac{y}{r}, \quad \frac{\partial r}{\partial z} = \frac{z}{r}$$
Now $r^n \Rightarrow \frac{\partial v}{\partial x} = nr^{n-1}$

$$\frac{\partial r}{\partial x} = nr^{n-2} \left(\frac{x}{r}\right)$$

$$= nr^{n-2}x$$

$$x = \vec{r} = (xi + 4j + 2k)$$

$$= nr^{n-2}\vec{r}$$

or

option C

$$\nabla(r^{n}) = \sum_{i} \vec{l} \frac{\partial}{\partial x} (r^{n}) = \sum_{i} \vec{l} \vec{n}^{n-1} \frac{\partial r}{\partial x}$$

$$= \sum_{i} \vec{l} \vec{n}^{n-1} \frac{x}{r}$$

$$= nr^{n-1} \text{ vector } (xi + yj + zk)$$

$$= nr^{n-2} \vec{r}$$

Hence "option" (C) is correct

21. Solution: (C)

 $v \rightarrow 5$ dimensional vector space be Let v = [a, b, c, d, e] v_1 and v_2 be subspace of v having 3 -dimensional each.

$$\begin{array}{rcl} v_1 &= [a,b,c] \\ v_2 &= [c & d & e] \\ \vdots & v_1 \cap v_2 &= [c] \\ &= 1 \end{array}$$

or

$$v = v_1 + v_2 - v_1 n v_2$$

$$5 = 3 + 3 - v_1 \cap v_2$$

$$v_1 \cap v_2 = 6 - 5$$

$$v_1 \cap v_2 = 1$$

Hence option (C) is Correct

22. Solution: (A)

$$\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$$

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & 2y & 3z \end{vmatrix} = 0$$

$$\Rightarrow \hat{i} \left[\frac{\partial}{\partial y} (3z) - \frac{\partial}{\partial z} (2y) \right] - \hat{j} \left[\frac{\partial}{\partial x} (3z) - \frac{\partial}{\partial z} (x) \right] + \hat{k} \left[\frac{\partial}{\partial x} (2y) - \frac{\partial}{\partial y} (x) \right] = 0$$

$$\Rightarrow 0 + 0 + 0 = 0$$

Hence, option (A) is correct.

23. Solution: (C)

 $\vec{\nabla}^2 A = \vec{\nabla}(\vec{\nabla} \cdot \vec{A}) - \vec{\nabla} \times (\vec{\nabla} \times \vec{A})$, in solving for curl of \vec{A} and divergence of \vec{A} , the answer comes out to be zero. Hence, option (C) is current.

24. Solution: (A)

Given vector are

$$\vec{A} = 2i - j + \hat{k}$$

$$\vec{B} = 3i + 4j - k$$

This can be found by cross product

$$\vec{A} \times \vec{B} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & 4 & -1 \end{vmatrix}$$

$$\vec{A} \times \vec{B} = i[1 + 4] - j[-2 + 3] + k[8 + 3]$$

$$= i[5] - j[1] + k[5]$$

$$\vec{A} \times \vec{B} = -3i + 5j + 11\hat{k}$$

A unit vector along $\vec{A} \times \vec{B} = \frac{\vec{A} \times \vec{B}}{\vec{I} \vec{A} \vee \vec{B}}$

$$= \frac{-3\hat{\imath} + 5\hat{\jmath} + 11\hat{k}}{\sqrt{(-3)^2 + (5)^2 + (11)^2}}$$
$$\vec{A} \times \vec{B} = \frac{-3\hat{\imath} + 5\hat{\jmath} + 11\hat{k}}{\sqrt{155}}$$

Hence option (A) is correct

25. Solution: (C)

The integral $\int \hat{u}$ ds over a closed surface s is related to the volume V by the volume v by the divergence theorem which states that $\iint v(\nabla \cdot \hat{u}) dv$ equals $\iint s\hat{u} ds$ if \hat{u} is constant vector then $(\nabla \cdot \hat{u})$ is zero and the integral over s is zero [the $\hat{u} = \hat{n}$]

Therefore the correct option is (C)

26. Solution: (D)

Using Gauss divergence theorem we get $=4\pi\delta^3(r-0)$ since $[\delta^3(r-0)=1]$ $= 4\pi(1)$ $=4\pi$ Hence option (D) is correct.

27. Solution: (A)

We know that $f=\frac{-dv}{dr}$, where r is the distance from the origin of the coordinate system.

$$\Rightarrow$$
 curl of $F = 0$

i.e.
$$\vec{\nabla} \times \vec{F} = 0$$

Hence, option (A) is correct.

28. Solution: (A)

$$\vec{a} = \hat{\imath} + 5\hat{\jmath} + \hat{k}$$
$$\vec{b} = \hat{\imath} - 5\hat{\jmath} + \hat{k}$$

$$\vec{c} = \hat{i} + \hat{k}$$

$$\vec{a} \times \vec{b} \times \vec{c} = \begin{vmatrix} 1 & 5 & 1 \\ 1 & -5 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

$$= -5 - 10 + 5$$

$$= -15 + 5$$

= $-10 \neq 0$

The determent of vectors is not equal to zero. it means vectors are linearly independent

[If the vectors are equal to zero then it consider as linearly dependent]

Hence option (A) is Correct

29. Solution: (B)

For conservation force $\nabla imes \overline{F} = 0$

From option B,

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2xy + z^2 & x^2 & 2xz \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = 0$$

Hence option (B) is correct

MATRICES

[AUG-2011]

1. The real matrix $A = \begin{bmatrix} a & f & g \\ -f & a & -h \\ -g & h & a \end{bmatrix}$ is skew symmetric

when:

(A)
$$a = 0$$

(B)
$$f = 0$$

(C)
$$g = h$$

(D)
$$f = g$$

[AUG-2011]

- 2. The eigenvalues of the matrix $\begin{pmatrix} 1 & \omega \\ \omega & 1 \end{pmatrix}$ by:
 - (A) 1

(B) $\pm \omega$

(C) $\pm \omega^2$

(D) $\pm i$

[AUG-2011]

- 3. The determinant of a 3×3 real symmetric matrix is 36. If two of its eigenvalues are 2 and 3, then the sum of the eigenvalues is:
 - (A) 30

(B) 10

(C) 11

(D) 31

4. The eigenvalues of the matrix

$$\begin{bmatrix} i & -i & 0 \\ 0 & 1 & i \\ 0 & 0 & -i \end{bmatrix}$$
Are:

(A) i, -i, 0

- (B) i, i^2, i^3
- (C) 1, 0, -1
- (D) 1, i, -i

[FEB-2013]

[NOV-2011]

5. The eigenvalues of (2×2) matrix are:

$$\begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$$

(A) 0, 2

(B) 1, 3

(C) 3, -1

(D) 1 + i, 1 - i

[FEB-2013]

- 6. The trace of an antisymmetric matrix is:
 - (A) Real

- (B) Zero
- (C) Pure Imaginary
- (D) Unity

[FEB-2013]

- 7. If A is an antisymmetric matrix of odd order n, then the determinant of A is :
 - (A) positive real number
- (B) negative real number

(C) zero

(D) real number $(-1)^{(n+1)/2}$

[DEC 2013]

- 8. A (3×3) matrix has unequal eigenvalues a, b and c and its determinant is D. If a = -1, b = 2 and D = 4, what is the value of c?
 - (A) 1

(B) -1

(C) -2

(D) 0

[DEC 2013]

9. A matrix M is of the form $M = \begin{bmatrix} 0 & a \\ -a^* & 0 \end{bmatrix}$

If the det M = 1, the most general value of 'a' is:

- (A) $\cos \theta$
- (B) $\sin \theta$
- (C) $exp(i\theta)$
- (D) $\cosh \theta$ where θ is a real parameter.

[SEPT-2015]

10. A, B, C, D are $(n \times n)$ matrices, each with non-zero determinant. If:

ABCD = I, then B^{-1} is

- (A) $D^{-1}C^{-1}A^{-1}$
- (B) *CDA*

(C) ADC

(D) Does not exist

[SEPT-2015]

- 11. The eigenvalues of the matrix: $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 7 \\ 0 & 0 & 3 \end{bmatrix}$ are
 - (A) 1, 4, 3
- (B) 3, 7, 3

(C) 7, 3, 2

(D) 1, 2,3

[MAY-2016]

- 12. Eigenvalues of the matrix $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ are:
 - (A) 1, -1

(B) -1, -i

(C) i, -i

(D) 1 + i, 1 - i