INDEX			
CHAPTER NO.	CHAPTER NAME	PAGE NO.	
1	ELECTRO MAGNETIC THEORY	1	
	Unit 1.1: Coulomb's Law	1	
	Unit 1.2: Gauss Law	4	
	Unit 1.3: Electrostatic Potential	6	
	Unit 1.4: Conductors	8	
	Unit 1.5: Laplace and Poisson Equations	10	
	Unit 1.6: Energy in Electrostatic System	12	
	Unit 1.7: Multipole Expansion	13	
	Unit 1.8: Dielectric Materials	17	
	Unit 1.9: Magnetostatics (Biot Savart Law)	19	
	Unit 1.10: Lorentz Force	22	
	Unit 1.11: Ampere's Law	24	
	Unit 1.12: Magnetic Vector Potential	26	
	Unit 1.13: Magnetic Dipole	28	
	Unit 1.14: Magnetic Moment	29	
	Unit 1.15: Torque on a Loop inside Magnetic Field	30	
	Unit 1.16: Electrodynamics Electromotive Force	31	
	Unit 1.17: Magnetic Induction and Inductance	34	
	Unit 1.18: Maxwell Equations and Boundary Conditions	36	
	Unit 1.19: Poynting Vector	40	
	Unit 1.20: Polarization	42	
	Unit 1.21: Interference of Electromagnetic Waves	44	
	Unit 1.22: Reflection and Refraction	48	
	Unit 1.23: Skin Depth	50	
	Unit 1.24: Damping of Electromagnetic Wave	51	
	Unit 1.25: Retarted Potential	52	
	Unit 1.26: Wave Guide	53	

	Unit 1.27: Relativistic Electrodynamics	55
	Unit 1.28: Phase Velocity and Group Velocity	57
	Unit 1.29: Vector and Scalar Potential	58
	Unit 1.30: Gauge Transformation	60
	Unit 1.31: Radiation	62
	Unit 1.32: Tensor	64
2	MATHEMATICAL PHYSICS	65
	Unit 2.1: Dimensional Analysis	65
	Unit 2.2: Vector Algebra and Vector Calculus	67
	Unit 2.3: Matrices	70
	Unit 2.4: Eigenvalues and Eigenvectors	74
	Unit 2.5: Linear Ordinary Differential Equations of First & Second Order	76
	Unit 2.6: Special functions (Hermite, Bessel, Laguerre and Legendre Functions)	81
	Unit 2.7: Fourier Series	84
	Unit 2.8: Fourier Transform	86
	Unit 2.9: Inverse Laplace Transform	88
	Unit 2.10: Laplace Transform	89
	Unit 2.11: Complex Analysis	91
	Unit 2.12: Taylor & Laurent Series	99
	Unit 2.13: Probability Theory	102
	Unit 2.14: Binomial, Poisson and Normal Distributions	104
	Unit 2.15: Random Variables and Random Walk	105
	Unit 2.16: Green's Function	107
	Unit 2.17: Partial Differential Equations	110
	Unit 2.18: Computational Techniques: Interpolation, Extrapolation and Finite Difference Methods	111
	Unit 2.19: Integration by Trapezoid and Simpson's Rule	112
	Unit 2.20: Introductory Group Theory: SU (2), O (3)	115
	Unit 2.21: Dirac Delta	116

	Unit 2.22: Miscellaneous	117
3	ELECTRONICS & EXPERIMENTAL METHODS	120
	Unit 3.1: Semiconductor Devices	120
	Unit 3.2: Application of Junction Diode	124
	Unit 3.3: Bipolar Junction Transistor	126
	Unit 3.4: Circuit Analysis	131
	Unit 3.5: Field Effect Transistor	133
	Unit 3.6: Operational Amplifiers and Its Applications	135
	Unit 3.7: Zener Diode and It's Applications	146
	Unit 3.8: Frequency Dependent Circuit Analysis	148
	Unit 3.9: Decoder and Encoder Circuit	151
	Unit 3.10: Data Interpretation and Analysis	152
	Unit 3.11: A/D and D/A converters	154
	Unit 3.12: Precision and Accuracy & Error Analysis	156
	Unit 3.13: Flip-Flops & Counters and Register	160
	Unit 3.14: Truth Table and Basic Gates	163
	Unit 3.15: Miscellaneous	168
4	QUANTUM MECHANICS	172
	Unit 4.1: Time Evolution of Wave Function	172
	Unit 4.2: Commutator	174
	Unit 4.3: Operators	176
	Unit 4.4: Unitary Transformation	178
	Unit 4.5: Ehrenfest Theorem	179
	Unit 4.6: Probability of Finding a Particle in a Given Region	181
	Unit 4.7: Schrodinger Equation	182
	Unit 4.8: Expectation Value of Energy	184
	Unit 4.9: Step Potential	186
	Unit 4.10: 1-D Box	187
	Unit 4.11: 3-D Box	189
	÷	

	Unit 4.12: Finite Potential Well	191
	Unit 4.13: Uncertainty in Position or Momentum	192
	Unit 4.14: Eigen Value and Eigen Function	194
	Unit 4.15: 1-D Linear Harmonic Oscillator	195
	Unit 4.16: 2-D Harmonic Oscillator	198
	Unit 4.17: 3-D Harmonic Oscillator	200
	Unit 4.18: Orbital Angular Momentum	201
	Unit 4.19: Spin Angular Momentum	204
	Unit 4.20: Pauli Matrices	206
	Unit 4.21: Identical Particles	208
	Unit 4.22: Hydrogen Atom	210
	Unit 4.23: Expectation Value of Position or Momentum	214
	Unit 4.24: Time-independent Non-degenerate Perturbation	216
	Unit 4.25: Time-independent Degenerate Perturbation	220
	Unit 4.26: Time Dependent Perturbation	222
	Unit 4.27: First Born Approximation	224
	Unit 4.28: Partial Wave Analysis	226
	Unit 4.29: WKB Approximation Method	228
	Unit 4.30: Wave Function for a Given Potential	230
	Unit 4.31: Variational Principle	231
	Unit 4.32: Miscellaneous	233
5	STATISTICAL MECHANICS & THERMAL PHYSICS	235
	Unit 5.1: Kinetic Theory of Gas	235
	Unit 5.2: Calorimetry Principle	239
	Unit 5.3: Zeroth & 1st Law of Thermodynamics	240
	Unit 5.4: Reversible& Irreversible Process & Work Done By the Gas/System	244
	Unit 5.5: 2nd Law of Thermodynamics and Entropy	246
	Unit 5.6: Thermodynamic Potentials and Maxwell's Relation.	249

	Unit 5.7: Van Der Waals Equation of State & Clausius Claypeyron Equation	251
	Unit 5.8: Probability and Random Walk	253
	Unit 5.9: Phase Space, Density of States & Micro and Macro States	255
	Unit 5.10: Ensembles and Their Partition Functions (And the Application of Partition Functions).	257
	Unit 5.11: Grand Canonical Ensemble and It's Partition Function	265
	Unit 5.12: Free Energy and Its Connection with Thermodynamics	266
	Unit 5.13: Quantum Statistics:	268
	Unit 5.14: Quantum Gases:	270
	Unit 5.15: Ising Model and Magnetic Systems	272
	Unit 5.16: Bose – Einstein Condensation:	277
	Unit 5.17: Black-Body Radiation	279
	Unit 5.18: Phase Transition:	281
6	CLASSICAL MECHANICS	282
	Unit 6.1: Kinematics	282
	Unit 6.2: Simple Harmonic Motion	286
	Unit 6.3: Gravitation	288
	Unit 6.4: Collision and Impulse	291
	Unit 6.5: Rigid Body Dynamics	293
	Unit 6.6: Centrifugal and Coriolis Force	295
	Unit 6.7: Lagrangian Dynamics	297
	Unit 6.8: Hamiltonian Dynamics	305
	Unit 6.9: Canonical Transformation	310
	Unit 6.10: Poisson Brackets	313
	Unit 6.11: Phase Space Trajectory	315
	Unit 6.12: Stability Analysis	319
	Unit 6.13: Virial Theorem	321
	Unit 6.14: Small Oscillations	322
	Unit 6.15: Central Force Motion	325

	Unit 6.16: Relativistic Collisions and Decay	328
	Unit 6.17: Lorentz Transformation and Velocity Addition	330
	Unit 6.18: Relativistic Energy Momentum Relation	332
	Unit 6.19: Relativistic Kinematics	334
7	ATOMIC & MOLECULAR PHYSICS	338
	Unit 7.1: Hydrogen Atom	338
	Unit 7.2: Vector Atom Model and Stern Gerlach Experiment	340
	Unit 7.3: LS and JJ Coupling	342
	Unit 7.4: Zeeman and Anomalous Zeeman Effect	345
	Unit 7.5: Hyperfine Structure	347
	Unit 7.6: X-RAYS	349
	Unit 7.7: Spectral Broadening	350
	Unit 7.8: Rotational Spectroscopy	352
	Unit 7.9: Vibrational Spectroscopy	354
	Unit 7.10: Raman Spectroscopy	356
	Unit 7.11: Laser	358
8	NUCLEAR & PARTICLE PHYSICS	363
	Unit 8.1: Basic Properties of Nucleus	363
	Unit 8.2: Relativistic Behavior	365
	Unit 8.3: BE/Liquid Drop Model	366
	Unit 8.4: Cross Section	368
	Unit 8.5: Radioactivity	370
	Unit 8.6: <i>β</i> – Decay	372
	Unit 8.7: Nuclear Reactions	373
	Unit 8.8: Coulomb Energy	375
	Unit 8.9: Collective Model	376
	Unit 8.10: Shell Model	377
	Unit 8.11: Elementary Particles	380
	Unit 8.12: Kinematics	381

Unit 8.13: Quark Model	384
Unit 8.14: Conservation Laws	385
SOLID STATE PHYSICS	390
Unit 9.1: Crystal Structure	390
Unit 9.2: Equilibrium	393
Unit 9.3: Reciprocal Lattice	394
Unit 9.4: Diffraction	396
Unit 9.5: Lattice Vibration	399
Unit 9.6: Specific Heat	401
Unit 9.7: Band Theory of Solid	403
Unit 9.8: Superconductivity	408
Unit 9.9: Hall Effect	410
Unit 9.10: Fermi Level	412
Unit 9.11: Density of States and Modes	414
Unit 9.12: Semiconductor	417
Unit 9.13: Lattice Defects	419
Unit 9.14: Tight Binding Approximation	420
	Unit 8.14: Conservation Laws SOLID STATE PHYSICS Unit 9.1: Crystal Structure Unit 9.2: Equilibrium Unit 9.3: Reciprocal Lattice Unit 9.4: Diffraction Unit 9.5: Lattice Vibration Unit 9.6: Specific Heat Unit 9.7: Band Theory of Solid Unit 9.8: Superconductivity Unit 9.9: Hall Effect Unit 9.10: Fermi Level Unit 9.11: Density of States and Modes Unit 9.12: Semiconductor Unit 9.13: Lattice Defects

Unit 1.1: Coulomb's Law

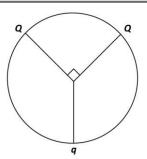
[NET JUNE 2020]

- Three-point charges q are placed at the corners of an equilateral triangle. Another point charge -Q is placed at the centroid of the triangle. If the force on each of the charges q vanishes, then the ratio Q/q is
 - (a) $\sqrt{3}$

(c) $\frac{1}{3\sqrt{3}}$

(d) $\frac{1}{3}$

[NET JUNE 2016]


- Four equal charge of +Q, each are kept at the vertices of a square of side R. A particle of mass m and charge +Q is placed in the plane of the square at a short distance $a(\ll$ R) from the centre. If the motion of the particle is confined to the plane, it will undergo small oscillations with an angular frequency
 - (a) $\sqrt{\frac{Q^2}{2\pi\varepsilon_0R^3m}}$
- (b) $\sqrt{\frac{Q^2}{\pi \varepsilon_0 R^3 m}}$
- (c) $\sqrt{\frac{\sqrt{2}Q^2}{\pi\varepsilon_0 R^3 m}}$
- (d) $\sqrt{\frac{Q^2}{4\pi\varepsilon_0 R^3 m}}$

[NET DEC. 2016]

- The charge per unit length of a circular wire of radius a in the xy – plane, with its centre at the origin, is λ = $\lambda_0 cos \; heta$, where λ_0 is a constant and the angle heta is measured from the positive x —axis. The electric field at the center of the circle is
 - (a) $\vec{E} = -rac{\lambda_0}{4\epsilon_0 a} \hat{\imath}$
- (b) $\vec{E} = \frac{\lambda_0}{4 \in_0 a} \hat{\imath}$
- (a) $E = -\frac{\lambda_0}{4\epsilon_0 a} \hat{\imath}$ (b) $E = \frac{\lambda}{4\epsilon_0 a} \imath$ (c) $\vec{E} = -\frac{\lambda_0}{4\epsilon_0 a} \hat{\jmath}$ (d) $\vec{E} = \frac{\lambda_0}{4\epsilon_0 a} \hat{k}$

[NET DEC. 2012]

Three charges are located on the circumference of a circle of radius $^{\prime}R^{\prime}$ as shown in the figure below. The two charges Q subtend an angle 90° at the centre of the circle. The charge 'q' is symmetrically placed with respect to the charges Q. If the electric field at the centre of the circle is zero, what is the magnitude of Q?

(a) $\frac{q}{\sqrt{2}}$

(b) $\sqrt{2}q$

(c) 2q

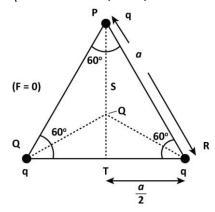
(d) 4q

[NET DEC. 2011]

- 5. Four equal point charges are kept fixed at the four vertices of a square. How many neutral points (i.e. points where the electric field vanishes) will be found inside the square?
 - (a) 1

(b) 4

(c) 5


(d) 7

Answer Key				
1	2	3	4	5
b	С	a	а	С

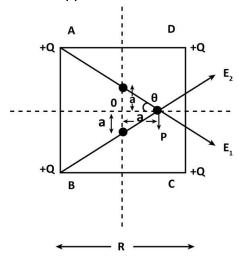
:: Solutions ::

1. Solution:- (b)

Force on q should be zero (F = 0)

$$PT = \sqrt{a^2 - \left(\frac{a}{2}\right)^2} \Rightarrow \sqrt{a^2 - \frac{a^2}{4}} \Rightarrow \sqrt{\frac{3a^2}{4}} \Rightarrow \frac{\sqrt{3}a}{2}$$

$$PS \Rightarrow \frac{2}{2} \text{ of } PT$$


$$PS = \frac{2}{3} \times \frac{\sqrt{3}a}{2} \Rightarrow \frac{a}{\sqrt{3}}$$

Angle of equilateral triple is 60°. So

Force on q due to all 3 charpes q, q & -Q.

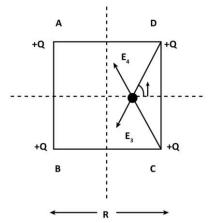
$$\frac{kq^2\cos 30^{\circ}}{a^2} + \frac{kq^2\cos 30^{\circ}}{a^2} \Rightarrow k\frac{qQ}{\left(\frac{Q}{\sqrt{3}}\right)^2}$$

2. Solution:- (c)

Consider particle is at point P which is at a distance (a) from the centre O.

 E_1 & E_2 be the electric field due to charges present at A & B resp.

 $E_1=E_2$ because distance & charges are equal due to which we calculate electric field at point P.


$$E_1 = E_2 = \frac{k Q}{\left[\left(\frac{R}{2}\right)^2 + \left(\frac{R}{2} + \frac{a}{2}\right)^2\right]}$$

Resultant of electric field's present at point P due to charges present at A & B are.

$$E_{2,y} = 2 E_1 \cos \theta$$

$$E_{12,y} = \frac{2k\theta}{\left[\left(a + \frac{R}{2}\right)^2 + \left(\frac{R}{2}\right)^2\right]^{\frac{3}{2}}} \left[a + \frac{R}{2}\right) \frac{2k\theta}{\left[\frac{R^2}{2}\right]^{\frac{3}{2}}} \left(a + \frac{R}{2}\right)$$

$$E_{12,y} \Rightarrow \frac{4\sqrt{2}k\theta}{R^3} \left[a + \frac{R}{2} \right] \dots (1)$$

Similarly,
$$E_3 = E_4 = \frac{k\theta}{\left[\left(\frac{R}{2} - a\right)^2 + \left(\frac{R}{2}\right)^2\right]}$$

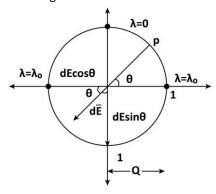
Resultant
$$E_{3,4,y} = 2E_3 \cos d = \frac{2k\theta}{\left[\left(\frac{R}{2} - a\right)^2 + \frac{R^2}{4}\right]^{\frac{3}{2}}} \left(\frac{R - a}{2}\right)$$

$$E_{34,y} = \frac{4\sqrt{2}k\theta}{R^3} \left[\frac{R}{2} - a \right] \dots (2)$$

Now, add equation (1) & (2)

Resultant
$$E\Rightarrow \frac{4\sqrt{2}k\theta}{R^3}\Big[\Big(\frac{R}{2}-a\Big)-\Big(\frac{R}{2}+a\Big)\Big]\Rightarrow -\frac{8\sqrt{2}k\theta}{R^3}$$

$$E \Rightarrow \frac{-8\sqrt{2}}{R^3} \frac{\theta a}{4\pi\epsilon}$$


$$E \Rightarrow \frac{-2\sqrt{2}\theta}{\pi \in {}_{0}R^{3}}$$

Force on that charge present at point P is $F\Rightarrow QE\ F\Rightarrow \frac{-2\sqrt{2}Qa}{\pi\epsilon_0R^3}$

$$w \Rightarrow \sqrt{\frac{2\sqrt{2}Q^2}{\pi \in_0 m R^3}}$$

3. Solution:- (a)

Given Angle measured From x - axis.

Correct option is from a & b.

Electric field due to a charged element at P is.

$$dE = -dE\cos\theta \,\hat{\imath} - dE\sin\theta \,\hat{\jmath}$$

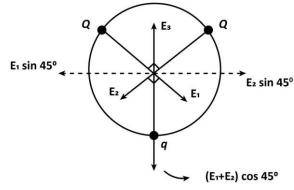
So, the total electric field at at the centre is.

$$\vec{E} = -i \int \frac{\lambda \, dl}{4\pi \epsilon_0 a^2} \cos\theta \, - \hat{j} \int \frac{\lambda \, dl}{4\pi \epsilon_0 a^2} \sin\theta$$

Given :-
$$\lambda = \lambda_0 \cos \theta$$

$$\vec{E} = -\hat{\imath} \int_0^{2\pi} \frac{\lambda_0 \cos^2 \theta}{4\pi \epsilon_0 a^2} (a \ d\theta) \ -$$

$$\hat{j} \int \frac{\lambda_0 \cos \theta (a \, d \, \theta) \sin \theta}{4\pi \epsilon_0 a^2} \qquad [dl = a \, d\theta]$$


$$\vec{E} \Rightarrow \frac{-i\lambda_0}{4\pi\epsilon_0 a} \int_0^{2\pi} \cos^2\theta \ d\theta - \hat{j} \int \frac{\lambda_0}{4\pi\epsilon_0 a} \cos\theta \sin\theta \ d\theta$$

$$\vec{E} \; \Rightarrow \; -\hat{\imath} \; \Big(\frac{\lambda_0}{4\pi \epsilon_0 a} \Big) \Big(\frac{2\pi}{2} \Big) \quad = \; -\frac{\lambda_0}{4\epsilon_0 a} \quad \hat{\imath}$$

$$\vec{E} = \frac{-\lambda_0 \,\hat{\imath}}{4 \in_0 a}$$

4. Solution: (a)

Electric field due to the two equal charges Q will be

$$E_1 = E_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2}$$

Electric field due to the charge q will be $E_3=rac{1}{4\pi\varepsilon_0}rac{q}{R^2}$

Resultant of E_1 and E_2 is $= \sqrt{E_1^2 + E_2^2} = \sqrt{2} E_1$,

$$\begin{split} E_1 &= E_2 = \frac{\sqrt{2}Q}{4\pi\epsilon_0 R^2} = \frac{q}{4\pi\epsilon_0 R^4} \\ &\Rightarrow Q = \frac{q}{\sqrt{2}} \end{split}$$

5. Solution:- (c)

Inside the square, there is only five points where the field vanishes due to symmetry one at the centre and other 4 also present due to the 4 charges present at the vertices.